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1. Introduction 
 

Computer technology has made incredible progress in the roughly 65 years since 
the first general-purpose electronic computer was created. Today, less than $500 will 
purchase a mobile computer that has more performance, more main memory, and 
more disk storage than a computer bought in 1985 for $1 million. This rapid 
improvement has come both from advances in the technology used to build computers 
and from innovations in computer design. 
 

Although technological improvements have been fairly steady, progress arising 
from better computer architectures has been much less consistent. During the first 25 
years of electronic computers, both forces made a major contribution, delivering 
performance improvement of about 25% per year. The late 1970s saw the emergence 
of the microprocessor. The ability of the microprocessor to ride the improvements in 
integrated circuit technology led to a higher rate of performance improvement—
roughly 35% growth per year. 
 

This growth rate, combined with the cost advantages of a mass-produced 
microprocessor, led to an increasing fraction of the computer business being based on 
microprocessors. In addition, two significant changes in the computer marketplace 
made it easier than ever before to succeed commercially with a new architecture. 
First, the virtual elimination of assembly language programming reduced the need for 
object-code compatibility. Second, the creation of standardized, vendor-independent 
operating systems, such as UNIX and its clone, Linux, lowered the cost and risk of 
bringing out a new architecture.  

 
These changes made it possible to develop successfully a new set of 

architectures with simpler instructions, called RISC (Reduced Instruction Set 
Computer) architectures, in the early 1980s. The RISC-based machines focused the 
attention of designers on two critical performance techniques, the exploitation of 
instruction level parallelism (initially through pipelining and later through multiple 
instruction issue) and the use of caches (initially in simple forms and later using more 
sophisticated organizations and optimizations). 
 

Figure 1 shows that the combination of architectural and organizational 
enhancements led to 17 years of sustained growth in performance at an annual rate of 
over 50%—a rate that is unprecedented in the computer industry. 
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Figure 1: Growth in processor performance since the late 1970s. 

The effect of this dramatic growth rate in the 20th century has been fourfold. First, 
it has significantly enhanced the capability available to computer users. For many 
applications, the highest-performance microprocessors of today outperform the 
supercomputer of less than 10 years ago. Second, this dramatic improvement in cost-
performance leads to new classes of computers. Personal computers and workstations 
emerged in the 1980s with the availability of the microprocessor. 
 
 

2. Classes of Computers 

The historical evolution of computers can be divided roughly into the following 
classes: 
1- Mainframes: In the 1960s, the dominant form of computing was on large 
mainframes, computers costing millions of dollars and stored in computer rooms with 
multiple operators overseeing their support. Typical applications included business 
data processing and large-scale scientific computing. 

 
2- Minicomputer: The 1970s saw the birth of the minicomputer, a smaller-sized 
computer initially focused on applications in scientific laboratories, but rapidly 
branching out with the popularity of timesharing— multiple users sharing a computer 
interactively through independent terminals. That decade also saw the emergence of 
supercomputers, which were high-performance computers for scientific computing. 
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3- Desktop Computer: The 1980s saw the rise of the desktop computer based on 
microprocessors, in the form of both personal computers and workstations. The 
individually owned desktop computer replaced time-sharing and led to the rise of 
servers—computers that provided larger-scale services such as reliable, long-term file 
storage and access, larger memory, and more computing power. 
 
4- PDA Electronics: The 1990s saw the emergence of the Internet and the World 
Wide Web, the first successful handheld computing devices (personal digital 
assistants or PDAs), and the emergence of high-performance digital consumer 
electronics, from video games to set-top boxes. 

 
 

5- Embedded Computers: since 2000, where computers are lodged in other 
devices and their presence is not immediately obvious. 

 
 
These changes in computer use have led to five different computing markets, each 

characterized by different applications, requirements, and computing technologies. 
Figure 2 summarizes these mainstream classes of computing environments and their 
important characteristics. 

 

 
Figure 2: A summary of the five mainstream computing classes and their system characteristics. 

 
Personal mobile device (PMD) is the term we apply to a collection of wireless 

devices with multimedia user interfaces such as cell phones, tablet computers, and so 
on. A real-time performance requirement means a segment of the application has an 
absolute maximum execution time. For example, in playing a video on a PMD, the 
time to process each video frame is limited, since the processor must accept and 
process the next frame shortly. Whereas soft real-time, arise when it is possible to 
occasionally miss the time constraint on an event, as long as not too many are missed. 
Other key characteristics in many PMD applications are the need to minimize 
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memory and the need to use energy efficiently. Energy efficiency is driven by both 
battery power and heat dissipation. 

 
 
Desktop Computing The first, and probably still the largest market in dollar 

terms, is desktop computing. Since 2008, more than half of the desktop computers 
made each year have been battery operated laptop computers. Throughout this range 
in price and capability, the desktop market tends to be driven to optimize price-
performance. This combination of performance (measured primarily in terms of 
compute performance and graphics performance) and price of a system is what 
matters most to customers in this market, and hence to computer designers. As a 
result, the newest, highest-performance microprocessors and cost-reduced 
microprocessors often appear first in desktop systems. 

  
 

Servers As the shift to desktop computing occurred in the 1980s, the role of 
servers grew to provide larger-scale and more reliable file and computing services. 
Such servers have become the backbone of large-scale enterprise computing, 
replacing the traditional mainframe.  

For servers, different characteristics are important. First, availability is critical. 
Consider the servers running ATM machines for banks or airline reservation systems. 
Failure of such server systems is far more catastrophic than failure of a single 
desktop, since these servers must operate seven days a week, 24 hours a day. 

A second key feature of server systems is scalability. Server systems often grow in 
response to an increasing demand for the services they support or an increase in 
functional requirements. Thus, the ability to scale up the computing capacity, the 
memory, the storage, and the I/O bandwidth of a server is crucial.  

Finally, servers are designed for efficient throughput. That is, the overall 
performance of the server—in terms of transactions per minute or Web pages served 

per second—is what is crucial. 
 
 
Clusters/Warehouse-Scale Computers Clusters are collections of desktop 

computers or servers connected by local area networks to act as a single larger 
computer. Each node runs its own operating system, and nodes communicate using a 
networking protocol. The largest of the clusters are called warehouse-scale computers 
(WSCs), in that they are designed so that tens of thousands of servers can act as one. 
The growth of Software as a Service (SaaS) for applications like search, social 
networking, video sharing, multiplayer games, online shopping, and so on has led to 
the growth of a clusters.  

The difference from servers is that WSCs use redundant inexpensive 
components as the building blocks, relying on a software layer to catch and isolate 
the many failures that will happen with computing at this scale.  
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Note that scalability for a WSC is handled by the local area network connecting 
the computers and not by integrated computer hardware, as in the case of servers. 

 
Supercomputers are related to WSCs in that they are equally expensive, costing 

hundreds of millions of dollars, but supercomputers differ by emphasizing floating-
point performance and by running large, communication-intensive batch programs 
that can run for weeks at a time. This tight coupling leads to use of much faster 
internal networks. In contrast, WSCs emphasize interactive applications, large-scale 
storage, dependability, and high Internet bandwidth. 

 
 
Embedded Computers Embedded computers are found in everyday machines; 

microwaves, washing machines, most printers, most networking switches, and all cars 
contain simple embedded microprocessors. Embedded computers have the widest 
spread of processing power and cost. 1They include 8-bit and 216-bit processors that 
may cost less than a dime, 332-bit microprocessors that execute 100 million 
instructions per second and cost under $5, and 4high-end processors for network 
switches that cost $100 and can execute billions of instructions per second large, price 
is a key factor in the design of computers for this space. 

Two other key characteristics exist in many embedded applications: 1the need to 
minimize memory and the 2need to minimize power. Larger memories also mean 
more power, and optimizing power is often critical in embedded applications.  
Although the emphasis on low power is frequently driven by the use of batteries. 

 
3. Classes of Parallelism and Parallel Architectures 

Parallelism at multiple levels is now the driving force of computer design across 
all four classes of computers, with energy and cost being the primary constraints. 

 
There are basically two kinds of parallelism in applications: 

1. Data-Level Parallelism (DLP) arises because there are many data items that can be 
operated on at the same time. 

2. Task-Level Parallelism (TLP) arises because tasks of work are created that can 
operate independently and largely in parallel. 
 
Computer hardware in turn can exploit these two kinds of application parallelism 

in four major ways: 
1. Instruction-Level Parallelism exploits data-level parallelism at modest levels with 

compiler help using ideas like pipelining and at medium levels using ideas like 
speculative execution (it is an optimization technique where a computer 
system performs some task that may not be actually needed. The main idea is to do 
work before it is known whether that work will be needed at all, so as to prevent a 

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Computer_system
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delay that would have to be incurred by doing the work after it is known whether it 
is needed. If it turns out the work was not needed after all, any changes made by the 
work are reverted and the results are ignored)wikipedia. 

2. Vector Architectures and Graphic Processor Units (GPUs) exploit data-level 
parallelism by applying a single instruction to a collection of data in parallel. 

3. Thread-Level Parallelism exploits either data-level parallelism or task-level 
parallelism in a tightly coupled hardware model that allows for interaction among 
parallel threads. 

4. Request-Level Parallelism exploits parallelism among largely decoupled tasks 
specified by the programmer or the operating system.  

 
 

Flynn Classification (Taxonomy): Michael Flynn [1966] studied the parallel 
computing efforts in the 1960s, he found a simple classification whose abbreviations 
we still use today. He looked at the parallelism in the instruction and data streams 
called for by the instructions at the most constrained component of the 
multiprocessor, and placed all computers into one of four categories: 

 
1- Single instruction stream, single data stream (SISD)— This category is the 

uniprocessor. The programmer thinks of it as the standard sequential computer, 
but it can exploit instruction-level parallelism. 

 
2- Single instruction stream, multiple data streams (SIMD)—The same 

instruction is executed by multiple processors using different data streams. 
SIMD computers exploit data-level parallelism by applying the same 
operations to multiple items of data in parallel. Each processor has its own data 
memory (hence the MD of SIMD), but there is a single instruction memory and 
control processor, which fetches and dispatches instructions.  
 

3- Multiple instruction streams, single data stream (MISD)—No commercial 
multiprocessor of this type has been built to date, but it rounds out this simple 
classification. 
 

4- Multiple instruction streams, multiple data streams (MIMD)—Each processor 
fetches its own instructions and operates on its own data, and it targets task-
level parallelism. In general, MIMD is more flexible than SIMD and thus more 
generally applicable, but it is inherently more expensive than SIMD. For 
example, MIMD computers can also exploit data-level parallelism, although 
the overhead is likely to be higher than would be seen in an SIMD computer. 
This overhead means that grain size must be sufficiently large to exploit the 
parallelism efficiently. 
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4. Defining Computer Architecture 
 

The task the computer designer faces is a complex one: Determine what attributes 
are important for a new computer, then design a computer to 1maximize performance 
and 2energy efficiency while 3staying within cost, 4power, and 5availability 
constraints. This task has many aspects, including 1instruction set design, 2functional 
organization, 3logic design, and 4implementation (integrated circuit design, packaging, 
power, and cooling). 

 
 
5. Instruction Set Architecture: The Myopic View of 

Computer Architecture 

We use the term instruction set architecture (ISA) to refer to the actual 
programmer visible instruction set in this lectures. The ISA serves as the boundary 
between the software and hardware. 

 
1- Class of ISA—Nearly all ISAs today are classified as general-purpose register 

architectures, where the operands are either registers or memory locations. The 
80x86 has 16 general-purpose registers and 16 that can hold floating point 
data, while MIPS has 32 general-purpose and 32 floating-point registers. The 
two popular versions of this class are register-memory ISAs, such as the 
80x86, which can access memory as part of many instructions, and load-store 
ISAs, such as ARM and MIPS, which can access memory only with load or 
store instructions. All recent ISAs are load-store. 
 

2- Memory addressing—Virtually all desktop and server computers, including the 
80x86, ARM, and MIPS, use byte addressing to access memory operands. 
Some architectures, like ARM and MIPS, require that objects must be aligned. 
An access to an object of size s bytes at byte address A is aligned if A mod s = 
0. The 80x86 does not require alignment, but accesses are generally faster if 
operands are aligned.  
 

3- Addressing modes—In addition to specifying registers and constant operands, 
addressing modes specify the address of a memory object. MIPS addressing   
modes are Register, Immediate (for constants), and Displacement, where a 
constant offset is added to a register to form the memory address. The 80x86 
supports those three plus three variations of displacement: no register 
(absolute), two registers (based indexed with displacement), and two registers 
where one register is multiplied by the size of the operand in bytes (based with 
scaled index and displacement). It has more like the last three, minus the 
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displacement field, plus register indirect, indexed, and based with scaled index. 
ARM has the three MIPS addressing modes plus PC-relative addressing, the 
sum of two registers, and the sum of two registers where one register is 
multiplied by the size of the operand in bytes. It also has autoincrement and 
autodecrement addressing, where the calculated address replaces the contents 
of one of the registers used in forming the address. 
 

4- Types and sizes of operands—Like most ISAs, 80x86, ARM, and MIPS 
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character or 
half word), 32-bit (integer or word), 64-bit (double word or long integer), and 
IEEE 754 floating point in 32-bit (single precision) and 64-bit (double 
precision). The 80x86 also supports 80-bit floating point (extended double 
precision). 
 

5- Operations—The general categories of operations are data transfer, arithmetic 
logical, control (discussed next), and floating point. MIPS is a simple and easy-
to-pipeline instruction set architecture, and it is representative of the RISC 
architectures being used in 2011.  
 

6- Control flow instructions—Virtually all ISAs, including these three, support 
conditional branches, unconditional jumps, procedure calls, and returns. All 
three use PC-relative addressing, where the branch address is specified by an 
address field that is added to the PC. There are some small differences. MIPS 
conditional branches (BE, BNE, etc.) test the contents of registers, while the 
80x86 and ARM branches test condition code bits set as side effects of  
arithmetic/logic operations. The ARM and MIPS procedure call places the 
return address in a register, while the 80x86 call (CALLF) places the return 
address on a stack in memory. 
 

7- Encoding an ISA—There are two basic choices on encoding: fixed length and 
variable length. All ARM and MIPS instructions are 32 bits long, which 
simplifies instruction decoding. The 80x86 encoding is variable length, ranging 
from 1 to 18 bytes. Variable length instructions can take less space than fixed-
length instructions, so a program compiled for the 80x86 is usually smaller 
than the same program compiled for MIPS.  
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6. Organization and Hardware 

The implementation of a computer has two components: organization and 
hardware. The term organization includes the high-level aspects of a computer’s 
design, such as the memory system, the memory interconnect, and the design of the 
internal processor or CPU (central processing unit—where arithmetic, logic, 
branching, and data transfer are implemented). The term microarchitecture is also 
used instead of organization. For example, two processors with the same instruction 
set architectures but different organizations are the AMD Opteron and the Intel Core 
i7. Both processors implement the x86 instruction set, but they have very different 
pipeline and cache organizations.  

The switch to multiple processors per microprocessor led to the term core to also 
be used for processor. Instead of saying multiprocessor microprocessor, the term 
multicore has caught on. 

Hardware refers to the specifics of a computer, including the detailed logic design 
and the packaging technology of the computer. Often a line of computers contains 
computers with identical instruction set architectures and nearly identical 
organizations, but they differ in the detailed hardware implementation. For example, 
the Intel Core i7 and the Intel Xeon 7560 are nearly identical but offer different clock 
rates and different memory systems, making the Xeon 7560 more effective for server 
computers.  

 
7. Trends in Technology 

If an instruction set architecture is to be successful, it must be designed to survive 
rapid changes in computer technology. After all, a successful new instruction set 
architecture may last decades—for example, the core of the IBM mainframe has been 
in use for nearly 50 years. An architect must plan for technology changes that can 
increase the lifetime of a successful computer. 

 
Five implementation technologies, which change at a dramatic pace, are critical to 

modern implementations: 
 

• Integrated circuit logic technology—Transistor density increases by about 
35% per year. 

• Semiconductor DRAM (dynamic random-access memory)—Now that most 
DRAM chips are primarily shipped in DIMM (Dual In-line Memory 
Modules) modules, it is harder to track. chip capacity, as DRAM 
manufacturers typically offer several capacity products at the same time to 
match DIMM capacity. Capacity per DRAM chip has increased by about 
25% to 40% per year recently, doubling roughly every two to three years. 
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• Semiconductor Flash (electrically erasable programmable read-only 
memory) This nonvolatile semiconductor memory is the standard storage 
device in PMDs, and its rapidly increasing popularity has fueled its rapid 
growth rate in capacity. Capacity per Flash chip has increased by about 
50% to 60% per year recently, doubling roughly every two years. In 2011, 
Flash memory is 15  to 20 times cheaper per bit than DRAM. 

• Magnetic disk technology— Disks are 15 to 25 times cheaper per bit than 
Flash. Given the slowed growth rate of DRAM, disks are now 300 to 500 
times cheaper per bit than DRAM.  

• Network technology—Network performance depends both on the 
performance of switches and on the performance of the transmission 
system. 

 
8. Trends in Performance 

Bandwidth or Throughput is the total amount of work done in a given time, such 
as megabytes per second for a disk transfer. In contrast, latency or response time is 
the time between the start and the completion of an event, such as milliseconds for a 
disk access. Performance is the primary differentiator for microprocessors and 
networks. 

Capacity is generally more important than performance for memory and disks, so 
capacity has improved most. 

 
9. Trends in Power and Energy in Integrated Circuits 

Today, power is the biggest challenge facing the computer designer for nearly 
every class of computer. First, power must be brought in and distributed around the 
chip, and modern microprocessors use hundreds of pins and multiple interconnect 
layers just for power and ground. Second, power is dissipated as heat and must be 
removed.  

 
10. Trends in Cost 

Although costs tend to be less important in some computer designs—specifically 
supercomputers—cost-sensitive designs are of growing significance. Indeed, in the 
past 30 years, the use of technology improvements to lower cost, as well as increase 
performance, has been a major theme in the computer industry. 
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11. Principle of Locality 

Important fundamental observations have come from properties of programs. The 
most important program property that we regularly exploit is the principle of locality: 
Programs tend to reuse data and instructions they have used recently. A widely held 
rule of thumb is that a program spends 90% of its execution time in only 10% of the 
code. An implication of locality is that we can predict with reasonable accuracy what 
instructions and data a program will use in the near future based on its accesses in the 
recent past. The principle of locality also applies to data accesses, though not as 
strongly as to code accesses.  

Two different types of locality have been observed. Temporal locality states that 
recently accessed items are likely to be accessed in the near future. Spatial locality 
says that items whose addresses are near one another tend to be referenced close 
together in time. 

 
12. RISC and CISC 

Reduced instruction set computing (RISC) is a CPU design strategy based on the 
insight that a simplified instruction set provides higher performance when combined 
with a microprocessor architecture capable of executing those instructions using 
fewer microprocessor cycles per instruction. 

 
Complex instruction set computing (CISC) is a processor design where 

single instructions can execute several low-level operations (such as a load 
from memory, an arithmetic operation, and a memory store) or are capable of multi-
step operations or addressing modes within single instructions. 

 
 

 

CISC RISC 
Emphasis on hardware Emphasis on software 

Includes multi-clock 
complex instructions 

Single-clock, 
reduced instruction only 

Memory-to-memory: 
"LOAD" and "STORE" 

incorporated in instructions 

Register to register: 
"LOAD" and "STORE" 

are independent instructions 
Small code sizes, 

high cycles per second 
Low cycles per second, 

large code sizes 
Transistors used for storing 

complex instructions 
Spends more transistors 
on memory registers 

https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Cycles_per_instruction
https://en.wikipedia.org/wiki/Processor_design
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Operator_(programming)
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Addressing_mode
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The CISC approach attempts to minimize the number of instructions per program, 
sacrificing the number of cycles per instruction. RISC does the opposite, reducing the 
cycles per instruction at the cost of the number of instructions per program. 

 
Examples of CISC processors are: 

• IBM/360(excluding the 'scientific' Model 44) 
• VAX 
• PDP11 
• Motorola 68000 family 
• Intel x86 architecture based processors. 

 
Examples of RISC processors are: 

• Apple iPods (custom ARM7TDMI SoC) 
• Apple iPhone (Samsung ARM1176JZF) 
• Palm and PocketPC PDAs and smartphones (Intel XScale family, Samsung 

SC32442, ARM9) 
• Nintendo Game Boy Advance (ARM7) 
• Nintendo DS (ARM7, ARM9) 
• Sony Network Walkman (Sony in‐ house ARM based chip) 
• Some Nokia and Sony Ericsson mobile phones 
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Basic Processing Unit 
 
 
1. Some Fundamental Concepts 
 

To execute a program, the processor fetches one instruction at a time and performs the 
operation specified. Instructions are fetched from successive memory locations until a 
branch or a jump instruction is encountered. 

 
The processor keeps track of the address of the memory location containing the next 
instruction to be fetched using the program counter (PC). After fetching an 
instruction, the contents of the PC are updated to point to the next instruction in the 
sequence. Another key register in the processor is the instruction register, IR which 
contains the instruction that has to be executed. 
 
To execute an instruction, the processor has to perform the following 3 steps: 
 
1. Fetch the contents of the memory location pointed to by the PC. The contents of 
this location are an instruction to be executed. Hence they are loaded into the IR. 
This can be symbolically written as IR           [[PC]] 
 
2. Assuming that the memory is byte addressable, increment the contents of the PC by 
4, to point to the next instruction 
PC          [PC] + 4 
 
3. Carry out the actions specified by the instruction in the IR. 

 
In the instruction execution Step 1 and 2 are referred to as Instruction fetch 

phase and Step 3 as instruction execution phase. 
 
 

Figure below shows single bus organization in which the arithmetic and logic 
unit (ALU) and all registers are interconnected (single bus organization).  
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The data and address lines of the external memory bus are connected to the 
internal processor bus via MDR and MAR. 

Register MDR has two inputs and two outputs. Data may be loaded into MDR 
either from the memory bus or from the internal processor bus. The data stored in 
MDR may be placed on either bus.  

The input of MAR is connected to the internal bus, and it’s output is connected 
to the external bus.  

http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
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The control lines of the memory bus are connected to the instruction decoder 
and control logic block. This unit is responsible for issuing the signals that control the 
operation of all the units inside the processor and for interacting with the memory 
bus.  

• The number and use of the processor registers R0 through R(n-1) vary 
from one processor to another.  

• Registers y, z and TEMP are used by the processor for temporary 
storage during execution of some instructions.  

• The multiplexer MUX selects either the output of register y or a 
constant value 4 that will be provided as input A of the ALU  

• As instruction execution starts, data are transferred from one register to 
another, often passing through the ALU to perform some arithmetic or 
logic operation.  

 
An instruction can be executed by performing one or more of the following 

operations in some specified sequence:  
1. Transfer a word of data from one processor register to another or to the ALU  
2. Perform arithmetic or a logic operation and store the result in a processor register.  
3. Fetch the contents of a given memory location and load them into a processor 

register  
4. Store a word of data from a processor register into a given memory location  
 

We will explain each of the above in details:  
1. Suppose that we want to transfer the contents of register R1 to register R4. This 

done by the following steps:    R4             [R1] 
• Enable the output of register R1 by setting R1out to 1. This places the 

contents of R1 on the processor bus.  
• Enable the input of register R4 by setting R4in to 1. This loads data 

from the processor bus into register R4. 
• This can be written as : 

        R1out, R4in 
 

All operations and data transfers within the processor take place within time periods 
defined by the Processor Clock. 
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Register Gating showing the in and out gates for each 

 
2. Performing an Arithmetic or Logic Operation  

Arithmetic and logic unit has no internal storage. It performs arithmetic and logic 
operations on the two operands applied to it’s A and B inputs.  
 
As shown in the fig above; one of the operands is the output of the multiplexer 
MUX and the other operand is obtained directly from the bus. The result produced 
by the ALU is stored temporarily in register Z.  
Therefore, a sequence of operations to add the contents of register R1 to those of 
register R2 and store the result in register R3 is as follows:  
         R3              [R1] + [R2] 
 

1. R1out, Yin  
2. R2out, Select Y, ADD, Zin  
3. Zout, R3in  

Signals whose names are given in any step are activated for the duration of the 
clock cycle corresponding to that step. All other signals are inactive.  
 
Multiplexer: is a device that selects one digital/analog input out of several and that 
is transferred over a single line.  
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3. Fetching a Word from Memory  
To fetch a word of information from memory, the processor has to specify the 
address of the memory location where information is stored and request a Read 
operation. The information may be an instruction in a program or an operand 
specified by an instruction.  
 
The processor transfers the required address to the MAR, whose output is 
connected to the address lines of the memory bus. At the same time, the processor 
uses the control lines of the memory bus to indicate Read operation. When 
requested data are received from the memory they are stored in register MDR. 
Then they are transferred to other registers in the processor.  
 
Memory Function Completed (MFC) control signal is used to indicate the 
processor that the requested Read/Write operation has been completed.  
 

Mov R2, [R1] 
 

1. MAR          [R1]  
2. Start a Read operation on the memory bus  
3. Wait for the MFC response from the memory  
4. Load MDR from the memory bus  
5. R2          [MDR]  
 
 

The memory read operation requires three steps, which can be described by the 
activated signals as follows:  

 

1. R1out, MARin, Read  
2. MDRinE, WMFC  
3. MDRout, R2in  

 

WMFC is the control signal that causes the processor’s control circuitry to wait for 
the arrival of the MFC signal.  
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4. Storing a Word in Memory  
While writing a word into a memory location, the desired address is loaded into 
MAR. The data to be written are loaded into MDR, and a Write command is 
issued.  
 
Executing the instruction Mov [R1], R2 as follows:  

 
1· R1out, MARin  
2· R2out, MDRin, Write  
3· WMFC  

 
Write control signal causes the memory bus interface hardware to issue a write 
command on the memory bus. The processor remains in step 3 until the memory 
operation is completed and an MFC response is received.  
 
 
2. Execution of a Complete Instruction  
 

Consider the instruction Add R1, [R3] which adds the contents of a memory 
location pointed to by R3 to register R1. Execution of this instruction follows 
actions as below:  
 
1. Fetch the instruction  
2. Fetch the first operand (the contents of the memory location pointed to by R3)  
3. Perform the addition  
4. Load the result into R1 
 
And can be written as: 

 

http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
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Illustration: 

• In step 1 the instruction fetch operation is initiated by loading the contents 
of the PC into the MAR and sending a Read request to the memory.  

• The Select Signal is set to Select4 which causes the multiplexer MUX to 
select constant 4. This value is added to the operand at input B, which is the 
contents of the PC and the result is stored in register Z. The updated value 
is moved from register Z back into the PC during Step 2 while waiting for 
the memory to respond.  

• In Step3: the word fetched from the memory is loaded into the IR.  
• Steps 1 to 3are of the instruction fetch phase  
• Steps 4 to 7 are of the instruction execution phase  
• In step 4 the contents of register R3 are transferred to the MAR and a 

memory read operation is initiated.  
• In step 5 the contents of R1 are transferred to register Y.  
• When the Read operation is completed, the memory operand is available in 

Register MDR, and the addition operation is performed in step 6.  
• The contents of MDR are to the input B of the ALU over bus, and register 

Y is selected as a input A of the ALU. After performing addition, Sum is 
stored in register Z.  

• In step 7 contents of the register Z transferred to register R1.  
• Note: updated contents of PC are stored in register Y, because the PC value 

is needed to compute the branch target address in the case of Branch 
Instructions.  

 

 

Branch Instructions  
A Branch instruction replaces the contents of the PC with the branch target 
address. This address is obtained by adding offset X, to the updated value of the 
PC.  
       Branch x 
 

 

http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
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The figure above showing control sequence that implements an unconditional 
branch instruction.  

• In Step1 PC contents are transferred to MAR, and Read operation is 
initiated. Addition is done by adding the contents of PC with constant 4 the 
SUM is stored in register Z.  

• In Step 2 content of Z (updated PC value) is transferred to PC and Register 
Y.  
In step 3 after the memory operation completion the MDR contents are 
transferred to IR.  

• Steps 1 to 3is of instruction fetch phase.  
• In step 4 the offset X is moved onto the bus that is given as input B of 

ALU. The updated PC value is available in register Y that is given as input 
A of ALU, and then addition operation is performed. The result sends to 
register Z.  
In step 5 the result which is the branch target address is loaded into PC.  
 

For example, for a Branch-on-negative (Branch < 0) instruction, step 4 in figure is 
replaced with  

4. If N=0 then End , if N=1 then offset-field-of-IRout, Add, Zin,.  
 

 

 

3. Microprogrammed Control  
In Microprogrammedcontrol , control signals are generated by a program similar 
to machine language programs.  
 

 
Example shows the contents of microprogram memory 

A Control Word(CW) is a word whose individual bits represents the various 
control signals.  
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Microroutine: a sequence of a machine instruction is called microroutine for that 
instruction.  
The Individual control words in the microroutine are referred to as 
microinstruction.  
The microroutines for all instructions in the instruction set of a computer are 
strored in a special memory called the control store.  
The Control units can generate the control signals for any instructions by 
sequentially reading CWs of the corresponding microroutine from the control 
store.  
 
To read the control words sequentially from the control store, a micro program 
counter(µPC) is used.  
 
Every time a new instruction is loaded into the IR, the output of the block labeled 
as “Starting address generator” is loaded into the µPC.  
 
The µPC is then automatically incremented by the clock, causing successive 
microinstructions to be read from the control store. Hence the control signals are 
delivered to various parts of the processor in the correct sequence.  
 
Conditional Branch Microinstructions in addition to the branch address specifies 
which of the external inputs, condition codes or bits of the instruction register 
should be checked as a condition for branching to takes place.  
 
In this control unit the µPC is incremented every time a new microinstruction is 
fetched from the microprogram memory except in the following situation:  

 
1. When a new instruction is loaded into the IR, the µPC is loaded with the 
starting address of the microroutine for that instruction.  
2. When a branch microinstruction is encountered and the branch condition is 
satisfied, the µPC is loaded with the branch address.  
3. When an End microinstruction is encountered, the µPC is loaded with the 
address of the first CW in the microroutine for the instruction fetch cycle.  
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Sequencing of Control Signals 
 
1. Microprogrammed Control Unit 
 
The microprogram requires sequential execution of microinstructions, except for 
the branch at the end of the fetch phase. If each machine instructions is 
implemented by a microroutine. In micro control structure µPC governs the 
sequencing.  
A microroutine is entered by decoding the machine instruction into a starting 
address that is loaded into the µPC. Branching microinstructions specifies the 
branch address that transfers control to some other part. 
 

 
Microprogramed control unit- basic organization  

 
The above figure can be modified to enable conditional branch as follows: 
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Organization of the control unit to allow conditional branching in the 
microprogram 

The main advantages of the microprogrammed control are the fact that once the 
hardware configuration is established; there should be no need for further 
hardware or wiring changes. If we want to establish are different control sequence 
for the system, all we need to do is specify different set microinstructions for 
control memory. The hardware configuration should not be changed for different 
operations; the only thing that must be changed is the microprogram residing in 
control memory, but on the other hand, this technique is slower than Hardware 
Control Unit in since the execution of a single instruction requires many fetches 
from control store, however, this control unit is suitable for CISC design. 
 
2. Hardwired Control Unit 
In this case, the control signals are not stored anywhere in the control unit and 
these signals are generated instantly at the time of instruction fetch, this method 
depends mainly on hardware gates (oring, anding, not) to generate these control 
signals (consecutive control words). 
 
The advantage of hardwired control is that is very fast. The disadvantage is that 
the instruction set and the control logic are directly tied together by special circuits 
that are complex and difficult to design or modify. If someone designs a hardwired 
computer and later decides to extend the instruction set, the physical components 
in the computer must be changed. This is prohibitively expensive, because not 
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only must new chips be fabricated but also the old ones must be located and 
replaced, the following figures show the organization of this unit. 

 

 
Basic Organization of H/W control unit 

 

 
Basic Organization of H/W control unit with a separate decoder/encoder 

 
 

A programmable logic array (PLA) is a kind of programmable logic device used to 
implement combinational logic circuits. The PLA has a set of programmable AND 
gate planes, which link to a set of programmable OR gate planes, which can then 
be conditionally complemented to produce an output. The number of AND gates 
in the programmable AND array are usually much less and the number of inputs of 
each of the OR gates equal to  the number of AND gates. 

https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Electrical_network
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate


 26 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017 

 
PLA Schematic  

 
 

3. Dynamic Microprogramming 
A more advanced development known as dynamic microprogramming permits a 
microprogram to be loaded initially from an auxiliary memory such as a magnetic 
disk. Control units that use dynamic microprogramming employ a writable control 
memory; this type of memory can be used for writing (to change the 
microprogram) but is used mostly for reading. 

 

Memory Cycle Time (MCT) (time memory : tm) 
It is the time that is measured in nanoseconds, the time between one Ram access of 
time when the next Random Access Memory RAM access starts. 
 
In other words, it is the minimum time elapsed between two successive read/write 
operations. 

Memory access Time (MAT) 
Access time is the amount of time it takes the processor to read data, instructions, 
and information from memory. A computer’s access time directly affects how fast the 
computer processes data. Accessing data in memory can be more than 200,000 
times faster than accessing data on a hard disk because of the mechanical motion of 
the hard disk. 
 
In other word, it is the minimum time elapsed between the read/write signal and the 
MFC signal. 
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Drawing of the Read and Write Timing Signals 

 
Timing diagram for Mov R3, [R2] instruction (memory read operation) 

 

 
Timing diagram for Mov [R2], R1 Instruction (memory write operation) 
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Hardware Control Unit- Signals Generating 
Let us see how the encoder generated signal for single bus processor organization 
shown in following figure, the encoder circuit implements the following logic 
equation to generate Yin:  

 

 
 

 
Generating of Yin control signal 

 

 
 

 
 

Generating of Zout control signal 
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How can be sketched? 

 
 

 
Run Signal 
This signal is depends mainly on the WMFC signal, in which if there is no wait on 
memory, the run is 1 and the operation is normally going on, but, however, if there 
is any wait on memory, run became 0 which cause the CPU clocks became 
inactive for the entire time until the operation required form memory is completed. 
 
WMFC=T2+T5.Add+… 

 

Generating of the Run signal 
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The problem of the previous figure is that the MFC signal is independent of the 
CPU clocks and can arrive at any point during the CPU clock, the proper work is 
to start the operation at the positive edge of the clock since each operation required 
at least one clock to complete, if the operation started behind the positive edge 
(clock starting point), the remaining time of the clock will not be enough for any 
operation and error will happened. 
To solve this problem, flip-flop is needed to store the MFC signal and trigger it 
when new CPU clock is emitted. 

 
 

Microprogram Total Time and Clocks 
The miroprogram consumes some CPU time (clocks) depends on the length of that 
microprogram and the action performed.  

Consider the CPU clocks (tcpu)is 10 nsec, MAT=70 nsec. Find the total execution time 
for code in page 19, draw the clocks. 

Steps Time taken Wait time 
1, 2 70 nsec 50 nsec 

3 10 nsec 0 nsec 
4, 5 70 nsec 50 nsec 

6 10 nsec 0 nsec 
7 10 nsec 0 nsec 

total 170 nsec 100 nsec 
 

Number of clocks = 170/10=17 clocks, 10 of them are wait. 

Synchronizing of the MFC signal 
with CPU clocks 
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DRAM and SRAM 
DRAM (Dynamic RAM) requires the data to be refreshed periodically in order to 
retain the data. 
 
SRAM (Static RAM) does not need to be refreshed as the transistors inside would 
continue to hold the data as long as the power supply is not cut off. 
 
A DRAM module only needs a transistor and a capacitor for every bit of data where 
SRAM needs 6 transistors. Because the number of transistors in a memory module 
determine its capacity, a DRAM module can have almost 6 times more capacity with 
a similar transistor count to an SRAM module. This ultimately boils down to price, 
which is what most buyers are really concerned with. 
 
Some Differences 

1. SRAM is static while DRAM is dynamic. 
2. SRAM is faster compared to DRAM. 
3. SRAM consumes less power than DRAM. 
4. SRAM uses more transistors per bit of memory compared to DRAM. 
5. SRAM is more expensive than DRAM. 
6. Cheaper DRAM is used in main memory while SRAM is commonly used in cache 
memory. 
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Cache Memory 
A cache memory includes a small amount of fast memory (SRAM) and a large 
amount of slow memory (DRAM) as shown below. 

 

 

Cache Memory System 
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While the miss rate is the opposite of the hit rate. 

 

Program locality 

The main principle of the cache memory is the prediction of the memory location for 
the next access, which is called program locality. Program locality enables cache 
controller to get block of memory instead of getting just single instruction. 

This principal may not work properly when program executes jump and call 
instructions.  
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 35 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017 

 
 
Mapping Function 

Since the cache memory has limited size as compared to main memory, some kind of 
mapping is required to decide which block of main memory can reside in which block 
of cache memory, this called Cache Mapping Function. 

The cache mapping function is responsible for all cache operations: 
• Placement strategy: where to place an incoming block in the cache 
• Replacement strategy: which block to replace upon a miss 
• Read and write policy: how to handle reads and writes upon cache misses 

 
Three different types of mapping functions: 

• Associative Mapping Function 
• Direct mapped Mapping Function 
• Block-set associative Mapping Function 
 

Cache Read and Write Policies 

• Read and Write cache hit policies 
• Write through—updates both cache and MM upon each write, pros: (Important in   
multiprocessor systems), cons: (waste bus and memory bandwidth). 

    • Write back—updates only cache. Updates MM only upon block removal. 
Pros: (Reduces write traffic to memory), cons: (Takes longer to load new cache 
lines ), (required dirty bit). 

    • “Dirty bit” is set upon first write to indicate block must be written back. 
 
• Read and Write cache miss policies 
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    • Read miss—bring block in from MM, Either forward desired word as it is brought       
in, or, Wait until entire line is filled, then repeat the cache request. 

    • Write miss 
    • Write-allocate—bring block into cache, then update 
    • Write–no-allocate—write word to MM without bringing block into cache. 
 

1. Direct Mapping Function 

 

 
Direct Mapping Function 
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Mapping process 
– Use tag to see if a desired word is in cache 
– It there is no match, the block containing the required word must first be read from 
the memory 
Advantage 
– simplest replacement algorithm 
Disadvantage 
– not flexible 
– there is contention problem even when cache is not full 
 
 For example, block 0 and block 128 both take only block 0 of cache: 
– 0 modulo 128 = 0 
– 128 modulo 128 = 0 
– If both blocks 0 and 128 of the main memory are used a lot, it will be very slow 
 

2. Associative Mapping Function 
In this technique, the main memory block can be placed into any cache block position, 
as there is no fix position.  
The memory address has only two fields, word and tag, this technique is also referred 
to as fully associative.  

 
Associative Mapping Function 
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For example, 4095 blocks -> 4095 tag = 212 => 12 bit tag 
 
Advantage 
– Any empty block in cache can be used, flexible 
Disadvantages  
– Must check all tags to check for a hit, expensive 
 

3. Set Associative Mapping Function 

 

 
Two-way set associative cache 
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Comparison between different placements techniques 
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Types of Cache Misses 
• Three types 

∗ Compulsory misses 
- Due to first-time access to a block 
- Also called cold-start misses or compulsory line (block) fills 
- Can be avoided by prefetch more 

∗ Capacity misses 
- Induced due to cache capacity limitation 
- Can be avoided by increasing cache size 

∗ Conflict misses 
- Due to conflicts caused by direct and set-associative mappings 
- Can be completely eliminated by fully associative mapping 
- Also called collision misses 

Example: 
Consider you have a cache memory of 4 blocks (lines) size, find the hit ratio for the 
following reference pattern = { 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4}  
For each of the following: 
1- direct mapping 
2- associative mapping 
3- Set associative mapping, 2 blocks per set ? 
Solution: 
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Another example solved in direct mapping function:ref {0,7,9,10,0,7,9,10,0,7,9,10} 
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Memory Interleaving 
 

This is a design made to compensate for the relatively slow speed of dynamic 
random-access memory (DRAM) or core memory, by spreading memory addresses 
evenly across memory banks. That way, contiguous memory reads and writes are 
using each memory bank in turn, resulting in higher memory throughputs due to 
reduced waiting for memory banks to become ready for desired operations. 

To speed up the memory operations (read and write), the main memory of 2n 
=N words can be organized as a set of 2m=M independent memory modules (where 
m<n each containing 2n-m words. If these M modules can work in parallel (or in a 
pipeline fashion), then ideally an M fold speed improvement can be expected. 
 

In low–order interleaving, consecutive addresses in the memory will be  
found in different memory banks. 

While in high-order interleaving, consecutive addresses in the main memory 
will be found in the same memory bank. 

 

 
High and low order interleaving 

 
 

https://en.wikipedia.org/wiki/Speed
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Memory_bank
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