

Done by Mokhtar M. Hasan, Lecturer at the
Computer Science Department, College of
Science for Women, to fulfill the course
subject of Advanced Architecture material.

Advanced
Architecture,
Third Class,
Computer
Science
Department,
CSW, 2016-2017

 1 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Textbooks:

1- Computer Architecture, A Quantitative Approach, Fifth Edition, John L. Hennessy, David A.
Patterson, Fifth Edition, 2012.

2- Computer Organization and Architecture, Designing for Performance, William Stallings, Eight
Edition, 2010.

3- Computer Organization and Embedded Systems, C. Hamacher, Z. Vranesic, S. Zeki, N.
Manjikian, 2012, Sixth Edition.

 2 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

1. Introduction

Computer technology has made incredible progress in the roughly 65 years since
the first general-purpose electronic computer was created. Today, less than $500 will
purchase a mobile computer that has more performance, more main memory, and
more disk storage than a computer bought in 1985 for $1 million. This rapid
improvement has come both from advances in the technology used to build computers
and from innovations in computer design.

Although technological improvements have been fairly steady, progress arising
from better computer architectures has been much less consistent. During the first 25
years of electronic computers, both forces made a major contribution, delivering
performance improvement of about 25% per year. The late 1970s saw the emergence
of the microprocessor. The ability of the microprocessor to ride the improvements in
integrated circuit technology led to a higher rate of performance improvement—
roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being based on
microprocessors. In addition, two significant changes in the computer marketplace
made it easier than ever before to succeed commercially with a new architecture.
First, the virtual elimination of assembly language programming reduced the need for
object-code compatibility. Second, the creation of standardized, vendor-independent
operating systems, such as UNIX and its clone, Linux, lowered the cost and risk of
bringing out a new architecture.

These changes made it possible to develop successfully a new set of

architectures with simpler instructions, called RISC (Reduced Instruction Set
Computer) architectures, in the early 1980s. The RISC-based machines focused the
attention of designers on two critical performance techniques, the exploitation of
instruction level parallelism (initially through pipelining and later through multiple
instruction issue) and the use of caches (initially in simple forms and later using more
sophisticated organizations and optimizations).

Figure 1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual rate of
over 50%—a rate that is unprecedented in the computer industry.

 3 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Figure 1: Growth in processor performance since the late 1970s.

The effect of this dramatic growth rate in the 20th century has been fourfold. First,
it has significantly enhanced the capability available to computer users. For many
applications, the highest-performance microprocessors of today outperform the
supercomputer of less than 10 years ago. Second, this dramatic improvement in cost-
performance leads to new classes of computers. Personal computers and workstations
emerged in the 1980s with the availability of the microprocessor.

2. Classes of Computers

The historical evolution of computers can be divided roughly into the following
classes:
1- Mainframes: In the 1960s, the dominant form of computing was on large
mainframes, computers costing millions of dollars and stored in computer rooms with
multiple operators overseeing their support. Typical applications included business
data processing and large-scale scientific computing.

2- Minicomputer: The 1970s saw the birth of the minicomputer, a smaller-sized
computer initially focused on applications in scientific laboratories, but rapidly
branching out with the popularity of timesharing— multiple users sharing a computer
interactively through independent terminals. That decade also saw the emergence of
supercomputers, which were high-performance computers for scientific computing.

 4 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

3- Desktop Computer: The 1980s saw the rise of the desktop computer based on
microprocessors, in the form of both personal computers and workstations. The
individually owned desktop computer replaced time-sharing and led to the rise of
servers—computers that provided larger-scale services such as reliable, long-term file
storage and access, larger memory, and more computing power.

4- PDA Electronics: The 1990s saw the emergence of the Internet and the World
Wide Web, the first successful handheld computing devices (personal digital
assistants or PDAs), and the emergence of high-performance digital consumer
electronics, from video games to set-top boxes.

5- Embedded Computers: since 2000, where computers are lodged in other
devices and their presence is not immediately obvious.

These changes in computer use have led to five different computing markets, each

characterized by different applications, requirements, and computing technologies.
Figure 2 summarizes these mainstream classes of computing environments and their
important characteristics.

Figure 2: A summary of the five mainstream computing classes and their system characteristics.

Personal mobile device (PMD) is the term we apply to a collection of wireless

devices with multimedia user interfaces such as cell phones, tablet computers, and so
on. A real-time performance requirement means a segment of the application has an
absolute maximum execution time. For example, in playing a video on a PMD, the
time to process each video frame is limited, since the processor must accept and
process the next frame shortly. Whereas soft real-time, arise when it is possible to
occasionally miss the time constraint on an event, as long as not too many are missed.
Other key characteristics in many PMD applications are the need to minimize

 5 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

memory and the need to use energy efficiently. Energy efficiency is driven by both
battery power and heat dissipation.

Desktop Computing The first, and probably still the largest market in dollar

terms, is desktop computing. Since 2008, more than half of the desktop computers
made each year have been battery operated laptop computers. Throughout this range
in price and capability, the desktop market tends to be driven to optimize price-
performance. This combination of performance (measured primarily in terms of
compute performance and graphics performance) and price of a system is what
matters most to customers in this market, and hence to computer designers. As a
result, the newest, highest-performance microprocessors and cost-reduced
microprocessors often appear first in desktop systems.

Servers As the shift to desktop computing occurred in the 1980s, the role of
servers grew to provide larger-scale and more reliable file and computing services.
Such servers have become the backbone of large-scale enterprise computing,
replacing the traditional mainframe.

For servers, different characteristics are important. First, availability is critical.
Consider the servers running ATM machines for banks or airline reservation systems.
Failure of such server systems is far more catastrophic than failure of a single
desktop, since these servers must operate seven days a week, 24 hours a day.

A second key feature of server systems is scalability. Server systems often grow in
response to an increasing demand for the services they support or an increase in
functional requirements. Thus, the ability to scale up the computing capacity, the
memory, the storage, and the I/O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall
performance of the server—in terms of transactions per minute or Web pages served

per second—is what is crucial.

Clusters/Warehouse-Scale Computers Clusters are collections of desktop

computers or servers connected by local area networks to act as a single larger
computer. Each node runs its own operating system, and nodes communicate using a
networking protocol. The largest of the clusters are called warehouse-scale computers
(WSCs), in that they are designed so that tens of thousands of servers can act as one.
The growth of Software as a Service (SaaS) for applications like search, social
networking, video sharing, multiplayer games, online shopping, and so on has led to
the growth of a clusters.

The difference from servers is that WSCs use redundant inexpensive
components as the building blocks, relying on a software layer to catch and isolate
the many failures that will happen with computing at this scale.

 6 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Note that scalability for a WSC is handled by the local area network connecting
the computers and not by integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive, costing

hundreds of millions of dollars, but supercomputers differ by emphasizing floating-
point performance and by running large, communication-intensive batch programs
that can run for weeks at a time. This tight coupling leads to use of much faster
internal networks. In contrast, WSCs emphasize interactive applications, large-scale
storage, dependability, and high Internet bandwidth.

Embedded Computers Embedded computers are found in everyday machines;

microwaves, washing machines, most printers, most networking switches, and all cars
contain simple embedded microprocessors. Embedded computers have the widest
spread of processing power and cost. 1They include 8-bit and 216-bit processors that
may cost less than a dime, 332-bit microprocessors that execute 100 million
instructions per second and cost under $5, and 4high-end processors for network
switches that cost $100 and can execute billions of instructions per second large, price
is a key factor in the design of computers for this space.

Two other key characteristics exist in many embedded applications: 1the need to
minimize memory and the 2need to minimize power. Larger memories also mean
more power, and optimizing power is often critical in embedded applications.
Although the emphasis on low power is frequently driven by the use of batteries.

3. Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across
all four classes of computers, with energy and cost being the primary constraints.

There are basically two kinds of parallelism in applications:

1. Data-Level Parallelism (DLP) arises because there are many data items that can be
operated on at the same time.

2. Task-Level Parallelism (TLP) arises because tasks of work are created that can
operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism

in four major ways:
1. Instruction-Level Parallelism exploits data-level parallelism at modest levels with

compiler help using ideas like pipelining and at medium levels using ideas like
speculative execution (it is an optimization technique where a computer
system performs some task that may not be actually needed. The main idea is to do
work before it is known whether that work will be needed at all, so as to prevent a

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Computer_system

 7 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

delay that would have to be incurred by doing the work after it is known whether it
is needed. If it turns out the work was not needed after all, any changes made by the
work are reverted and the results are ignored)wikipedia.

2. Vector Architectures and Graphic Processor Units (GPUs) exploit data-level
parallelism by applying a single instruction to a collection of data in parallel.

3. Thread-Level Parallelism exploits either data-level parallelism or task-level
parallelism in a tightly coupled hardware model that allows for interaction among
parallel threads.

4. Request-Level Parallelism exploits parallelism among largely decoupled tasks
specified by the programmer or the operating system.

Flynn Classification (Taxonomy): Michael Flynn [1966] studied the parallel
computing efforts in the 1960s, he found a simple classification whose abbreviations
we still use today. He looked at the parallelism in the instruction and data streams
called for by the instructions at the most constrained component of the
multiprocessor, and placed all computers into one of four categories:

1- Single instruction stream, single data stream (SISD)— This category is the

uniprocessor. The programmer thinks of it as the standard sequential computer,
but it can exploit instruction-level parallelism.

2- Single instruction stream, multiple data streams (SIMD)—The same

instruction is executed by multiple processors using different data streams.
SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel. Each processor has its own data
memory (hence the MD of SIMD), but there is a single instruction memory and
control processor, which fetches and dispatches instructions.

3- Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but it rounds out this simple
classification.

4- Multiple instruction streams, multiple data streams (MIMD)—Each processor
fetches its own instructions and operates on its own data, and it targets task-
level parallelism. In general, MIMD is more flexible than SIMD and thus more
generally applicable, but it is inherently more expensive than SIMD. For
example, MIMD computers can also exploit data-level parallelism, although
the overhead is likely to be higher than would be seen in an SIMD computer.
This overhead means that grain size must be sufficiently large to exploit the
parallelism efficiently.

 8 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

4. Defining Computer Architecture

The task the computer designer faces is a complex one: Determine what attributes
are important for a new computer, then design a computer to 1maximize performance
and 2energy efficiency while 3staying within cost, 4power, and 5availability
constraints. This task has many aspects, including 1instruction set design, 2functional
organization, 3logic design, and 4implementation (integrated circuit design, packaging,
power, and cooling).

5. Instruction Set Architecture: The Myopic View of

Computer Architecture

We use the term instruction set architecture (ISA) to refer to the actual
programmer visible instruction set in this lectures. The ISA serves as the boundary
between the software and hardware.

1- Class of ISA—Nearly all ISAs today are classified as general-purpose register

architectures, where the operands are either registers or memory locations. The
80x86 has 16 general-purpose registers and 16 that can hold floating point
data, while MIPS has 32 general-purpose and 32 floating-point registers. The
two popular versions of this class are register-memory ISAs, such as the
80x86, which can access memory as part of many instructions, and load-store
ISAs, such as ARM and MIPS, which can access memory only with load or
store instructions. All recent ISAs are load-store.

2- Memory addressing—Virtually all desktop and server computers, including the
80x86, ARM, and MIPS, use byte addressing to access memory operands.
Some architectures, like ARM and MIPS, require that objects must be aligned.
An access to an object of size s bytes at byte address A is aligned if A mod s =
0. The 80x86 does not require alignment, but accesses are generally faster if
operands are aligned.

3- Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. MIPS addressing
modes are Register, Immediate (for constants), and Displacement, where a
constant offset is added to a register to form the memory address. The 80x86
supports those three plus three variations of displacement: no register
(absolute), two registers (based indexed with displacement), and two registers
where one register is multiplied by the size of the operand in bytes (based with
scaled index and displacement). It has more like the last three, minus the

 9 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

displacement field, plus register indirect, indexed, and based with scaled index.
ARM has the three MIPS addressing modes plus PC-relative addressing, the
sum of two registers, and the sum of two registers where one register is
multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

4- Types and sizes of operands—Like most ISAs, 80x86, ARM, and MIPS
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character or
half word), 32-bit (integer or word), 64-bit (double word or long integer), and
IEEE 754 floating point in 32-bit (single precision) and 64-bit (double
precision). The 80x86 also supports 80-bit floating point (extended double
precision).

5- Operations—The general categories of operations are data transfer, arithmetic
logical, control (discussed next), and floating point. MIPS is a simple and easy-
to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2011.

6- Control flow instructions—Virtually all ISAs, including these three, support
conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences. MIPS
conditional branches (BE, BNE, etc.) test the contents of registers, while the
80x86 and ARM branches test condition code bits set as side effects of
arithmetic/logic operations. The ARM and MIPS procedure call places the
return address in a register, while the 80x86 call (CALLF) places the return
address on a stack in memory.

7- Encoding an ISA—There are two basic choices on encoding: fixed length and
variable length. All ARM and MIPS instructions are 32 bits long, which
simplifies instruction decoding. The 80x86 encoding is variable length, ranging
from 1 to 18 bytes. Variable length instructions can take less space than fixed-
length instructions, so a program compiled for the 80x86 is usually smaller
than the same program compiled for MIPS.

 10 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

6. Organization and Hardware

The implementation of a computer has two components: organization and
hardware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of the
internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is also
used instead of organization. For example, two processors with the same instruction
set architectures but different organizations are the AMD Opteron and the Intel Core
i7. Both processors implement the x86 instruction set, but they have very different
pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core to also
be used for processor. Instead of saying multiprocessor microprocessor, the term
multicore has caught on.

Hardware refers to the specifics of a computer, including the detailed logic design
and the packaging technology of the computer. Often a line of computers contains
computers with identical instruction set architectures and nearly identical
organizations, but they differ in the detailed hardware implementation. For example,
the Intel Core i7 and the Intel Xeon 7560 are nearly identical but offer different clock
rates and different memory systems, making the Xeon 7560 more effective for server
computers.

7. Trends in Technology

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—for example, the core of the IBM mainframe has been
in use for nearly 50 years. An architect must plan for technology changes that can
increase the lifetime of a successful computer.

Five implementation technologies, which change at a dramatic pace, are critical to

modern implementations:

• Integrated circuit logic technology—Transistor density increases by about
35% per year.

• Semiconductor DRAM (dynamic random-access memory)—Now that most
DRAM chips are primarily shipped in DIMM (Dual In-line Memory
Modules) modules, it is harder to track. chip capacity, as DRAM
manufacturers typically offer several capacity products at the same time to
match DIMM capacity. Capacity per DRAM chip has increased by about
25% to 40% per year recently, doubling roughly every two to three years.

 11 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

• Semiconductor Flash (electrically erasable programmable read-only
memory) This nonvolatile semiconductor memory is the standard storage
device in PMDs, and its rapidly increasing popularity has fueled its rapid
growth rate in capacity. Capacity per Flash chip has increased by about
50% to 60% per year recently, doubling roughly every two years. In 2011,
Flash memory is 15 to 20 times cheaper per bit than DRAM.

• Magnetic disk technology— Disks are 15 to 25 times cheaper per bit than
Flash. Given the slowed growth rate of DRAM, disks are now 300 to 500
times cheaper per bit than DRAM.

• Network technology—Network performance depends both on the
performance of switches and on the performance of the transmission
system.

8. Trends in Performance

Bandwidth or Throughput is the total amount of work done in a given time, such
as megabytes per second for a disk transfer. In contrast, latency or response time is
the time between the start and the completion of an event, such as milliseconds for a
disk access. Performance is the primary differentiator for microprocessors and
networks.

Capacity is generally more important than performance for memory and disks, so
capacity has improved most.

9. Trends in Power and Energy in Integrated Circuits

Today, power is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around the
chip, and modern microprocessors use hundreds of pins and multiple interconnect
layers just for power and ground. Second, power is dissipated as heat and must be
removed.

10. Trends in Cost

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in the
past 30 years, the use of technology improvements to lower cost, as well as increase
performance, has been a major theme in the computer industry.

 12 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

11. Principle of Locality

Important fundamental observations have come from properties of programs. The
most important program property that we regularly exploit is the principle of locality:
Programs tend to reuse data and instructions they have used recently. A widely held
rule of thumb is that a program spends 90% of its execution time in only 10% of the
code. An implication of locality is that we can predict with reasonable accuracy what
instructions and data a program will use in the near future based on its accesses in the
recent past. The principle of locality also applies to data accesses, though not as
strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states that
recently accessed items are likely to be accessed in the near future. Spatial locality
says that items whose addresses are near one another tend to be referenced close
together in time.

12. RISC and CISC

Reduced instruction set computing (RISC) is a CPU design strategy based on the
insight that a simplified instruction set provides higher performance when combined
with a microprocessor architecture capable of executing those instructions using
fewer microprocessor cycles per instruction.

Complex instruction set computing (CISC) is a processor design where

single instructions can execute several low-level operations (such as a load
from memory, an arithmetic operation, and a memory store) or are capable of multi-
step operations or addressing modes within single instructions.

CISC RISC
Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"

incorporated in instructions

Register to register:
"LOAD" and "STORE"

are independent instructions
Small code sizes,

high cycles per second
Low cycles per second,

large code sizes
Transistors used for storing

complex instructions
Spends more transistors
on memory registers

https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Cycles_per_instruction
https://en.wikipedia.org/wiki/Processor_design
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Operator_(programming)
https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Addressing_mode

 13 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

The CISC approach attempts to minimize the number of instructions per program,
sacrificing the number of cycles per instruction. RISC does the opposite, reducing the
cycles per instruction at the cost of the number of instructions per program.

Examples of CISC processors are:

• IBM/360(excluding the 'scientific' Model 44)
• VAX
• PDP11
• Motorola 68000 family
• Intel x86 architecture based processors.

Examples of RISC processors are:

• Apple iPods (custom ARM7TDMI SoC)
• Apple iPhone (Samsung ARM1176JZF)
• Palm and PocketPC PDAs and smartphones (Intel XScale family, Samsung

SC32442, ARM9)
• Nintendo Game Boy Advance (ARM7)
• Nintendo DS (ARM7, ARM9)
• Sony Network Walkman (Sony in‐ house ARM based chip)
• Some Nokia and Sony Ericsson mobile phones

 14 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Basic Processing Unit

1. Some Fundamental Concepts

To execute a program, the processor fetches one instruction at a time and performs the
operation specified. Instructions are fetched from successive memory locations until a
branch or a jump instruction is encountered.

The processor keeps track of the address of the memory location containing the next
instruction to be fetched using the program counter (PC). After fetching an
instruction, the contents of the PC are updated to point to the next instruction in the
sequence. Another key register in the processor is the instruction register, IR which
contains the instruction that has to be executed.

To execute an instruction, the processor has to perform the following 3 steps:

1. Fetch the contents of the memory location pointed to by the PC. The contents of
this location are an instruction to be executed. Hence they are loaded into the IR.
This can be symbolically written as IR [[PC]]

2. Assuming that the memory is byte addressable, increment the contents of the PC by
4, to point to the next instruction
PC [PC] + 4

3. Carry out the actions specified by the instruction in the IR.

In the instruction execution Step 1 and 2 are referred to as Instruction fetch

phase and Step 3 as instruction execution phase.

Figure below shows single bus organization in which the arithmetic and logic
unit (ALU) and all registers are interconnected (single bus organization).

 15 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

The data and address lines of the external memory bus are connected to the
internal processor bus via MDR and MAR.

Register MDR has two inputs and two outputs. Data may be loaded into MDR
either from the memory bus or from the internal processor bus. The data stored in
MDR may be placed on either bus.

The input of MAR is connected to the internal bus, and it’s output is connected
to the external bus.

http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg
http://3.bp.blogspot.com/-t24noxLz89k/U2O3dZhgTkI/AAAAAAAAD5I/sHjcHDiC6jA/s1600/Single+bus+organisation+of+the+datapath+inside+a+processor.jpg

 16 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

The control lines of the memory bus are connected to the instruction decoder
and control logic block. This unit is responsible for issuing the signals that control the
operation of all the units inside the processor and for interacting with the memory
bus.

• The number and use of the processor registers R0 through R(n-1) vary
from one processor to another.

• Registers y, z and TEMP are used by the processor for temporary
storage during execution of some instructions.

• The multiplexer MUX selects either the output of register y or a
constant value 4 that will be provided as input A of the ALU

• As instruction execution starts, data are transferred from one register to
another, often passing through the ALU to perform some arithmetic or
logic operation.

An instruction can be executed by performing one or more of the following

operations in some specified sequence:
1. Transfer a word of data from one processor register to another or to the ALU
2. Perform arithmetic or a logic operation and store the result in a processor register.
3. Fetch the contents of a given memory location and load them into a processor

register
4. Store a word of data from a processor register into a given memory location

We will explain each of the above in details:
1. Suppose that we want to transfer the contents of register R1 to register R4. This

done by the following steps: R4 [R1]
• Enable the output of register R1 by setting R1out to 1. This places the

contents of R1 on the processor bus.
• Enable the input of register R4 by setting R4in to 1. This loads data

from the processor bus into register R4.
• This can be written as :

 R1out, R4in

All operations and data transfers within the processor take place within time periods
defined by the Processor Clock.

 17 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Register Gating showing the in and out gates for each

2. Performing an Arithmetic or Logic Operation

Arithmetic and logic unit has no internal storage. It performs arithmetic and logic
operations on the two operands applied to it’s A and B inputs.

As shown in the fig above; one of the operands is the output of the multiplexer
MUX and the other operand is obtained directly from the bus. The result produced
by the ALU is stored temporarily in register Z.
Therefore, a sequence of operations to add the contents of register R1 to those of
register R2 and store the result in register R3 is as follows:
 R3 [R1] + [R2]

1. R1out, Yin
2. R2out, Select Y, ADD, Zin
3. Zout, R3in

Signals whose names are given in any step are activated for the duration of the
clock cycle corresponding to that step. All other signals are inactive.

Multiplexer: is a device that selects one digital/analog input out of several and that
is transferred over a single line.

 18 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

3. Fetching a Word from Memory
To fetch a word of information from memory, the processor has to specify the
address of the memory location where information is stored and request a Read
operation. The information may be an instruction in a program or an operand
specified by an instruction.

The processor transfers the required address to the MAR, whose output is
connected to the address lines of the memory bus. At the same time, the processor
uses the control lines of the memory bus to indicate Read operation. When
requested data are received from the memory they are stored in register MDR.
Then they are transferred to other registers in the processor.

Memory Function Completed (MFC) control signal is used to indicate the
processor that the requested Read/Write operation has been completed.

Mov R2, [R1]

1. MAR [R1]
2. Start a Read operation on the memory bus
3. Wait for the MFC response from the memory
4. Load MDR from the memory bus
5. R2 [MDR]

The memory read operation requires three steps, which can be described by the
activated signals as follows:

1. R1out, MARin, Read
2. MDRinE, WMFC
3. MDRout, R2in

WMFC is the control signal that causes the processor’s control circuitry to wait for
the arrival of the MFC signal.

 19 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

4. Storing a Word in Memory
While writing a word into a memory location, the desired address is loaded into
MAR. The data to be written are loaded into MDR, and a Write command is
issued.

Executing the instruction Mov [R1], R2 as follows:

1· R1out, MARin
2· R2out, MDRin, Write
3· WMFC

Write control signal causes the memory bus interface hardware to issue a write
command on the memory bus. The processor remains in step 3 until the memory
operation is completed and an MFC response is received.

2. Execution of a Complete Instruction

Consider the instruction Add R1, [R3] which adds the contents of a memory
location pointed to by R3 to register R1. Execution of this instruction follows
actions as below:

1. Fetch the instruction
2. Fetch the first operand (the contents of the memory location pointed to by R3)
3. Perform the addition
4. Load the result into R1

And can be written as:

http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg
http://3.bp.blogspot.com/-GsbqHeUMF40/U2O47_JIp_I/AAAAAAAAD5c/mcFL2UmEY-c/s1600/1.jpg

 20 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Illustration:

• In step 1 the instruction fetch operation is initiated by loading the contents
of the PC into the MAR and sending a Read request to the memory.

• The Select Signal is set to Select4 which causes the multiplexer MUX to
select constant 4. This value is added to the operand at input B, which is the
contents of the PC and the result is stored in register Z. The updated value
is moved from register Z back into the PC during Step 2 while waiting for
the memory to respond.

• In Step3: the word fetched from the memory is loaded into the IR.
• Steps 1 to 3are of the instruction fetch phase
• Steps 4 to 7 are of the instruction execution phase
• In step 4 the contents of register R3 are transferred to the MAR and a

memory read operation is initiated.
• In step 5 the contents of R1 are transferred to register Y.
• When the Read operation is completed, the memory operand is available in

Register MDR, and the addition operation is performed in step 6.
• The contents of MDR are to the input B of the ALU over bus, and register

Y is selected as a input A of the ALU. After performing addition, Sum is
stored in register Z.

• In step 7 contents of the register Z transferred to register R1.
• Note: updated contents of PC are stored in register Y, because the PC value

is needed to compute the branch target address in the case of Branch
Instructions.

Branch Instructions
A Branch instruction replaces the contents of the PC with the branch target
address. This address is obtained by adding offset X, to the updated value of the
PC.
 Branch x

http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg
http://4.bp.blogspot.com/-c4DYqa7Ks4k/U2O5FUqHNnI/AAAAAAAAD5k/MQifL46GPcQ/s1600/2.jpg

 21 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

The figure above showing control sequence that implements an unconditional
branch instruction.

• In Step1 PC contents are transferred to MAR, and Read operation is
initiated. Addition is done by adding the contents of PC with constant 4 the
SUM is stored in register Z.

• In Step 2 content of Z (updated PC value) is transferred to PC and Register
Y.
In step 3 after the memory operation completion the MDR contents are
transferred to IR.

• Steps 1 to 3is of instruction fetch phase.
• In step 4 the offset X is moved onto the bus that is given as input B of

ALU. The updated PC value is available in register Y that is given as input
A of ALU, and then addition operation is performed. The result sends to
register Z.
In step 5 the result which is the branch target address is loaded into PC.

For example, for a Branch-on-negative (Branch < 0) instruction, step 4 in figure is
replaced with

4. If N=0 then End , if N=1 then offset-field-of-IRout, Add, Zin,.

3. Microprogrammed Control
In Microprogrammedcontrol , control signals are generated by a program similar
to machine language programs.

Example shows the contents of microprogram memory

A Control Word(CW) is a word whose individual bits represents the various
control signals.

 22 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Microroutine: a sequence of a machine instruction is called microroutine for that
instruction.
The Individual control words in the microroutine are referred to as
microinstruction.
The microroutines for all instructions in the instruction set of a computer are
strored in a special memory called the control store.
The Control units can generate the control signals for any instructions by
sequentially reading CWs of the corresponding microroutine from the control
store.

To read the control words sequentially from the control store, a micro program
counter(µPC) is used.

Every time a new instruction is loaded into the IR, the output of the block labeled
as “Starting address generator” is loaded into the µPC.

The µPC is then automatically incremented by the clock, causing successive
microinstructions to be read from the control store. Hence the control signals are
delivered to various parts of the processor in the correct sequence.

Conditional Branch Microinstructions in addition to the branch address specifies
which of the external inputs, condition codes or bits of the instruction register
should be checked as a condition for branching to takes place.

In this control unit the µPC is incremented every time a new microinstruction is
fetched from the microprogram memory except in the following situation:

1. When a new instruction is loaded into the IR, the µPC is loaded with the
starting address of the microroutine for that instruction.
2. When a branch microinstruction is encountered and the branch condition is
satisfied, the µPC is loaded with the branch address.
3. When an End microinstruction is encountered, the µPC is loaded with the
address of the first CW in the microroutine for the instruction fetch cycle.

 23 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Sequencing of Control Signals

1. Microprogrammed Control Unit

The microprogram requires sequential execution of microinstructions, except for
the branch at the end of the fetch phase. If each machine instructions is
implemented by a microroutine. In micro control structure µPC governs the
sequencing.
A microroutine is entered by decoding the machine instruction into a starting
address that is loaded into the µPC. Branching microinstructions specifies the
branch address that transfers control to some other part.

Microprogramed control unit- basic organization

The above figure can be modified to enable conditional branch as follows:

 24 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Organization of the control unit to allow conditional branching in the
microprogram

The main advantages of the microprogrammed control are the fact that once the
hardware configuration is established; there should be no need for further
hardware or wiring changes. If we want to establish are different control sequence
for the system, all we need to do is specify different set microinstructions for
control memory. The hardware configuration should not be changed for different
operations; the only thing that must be changed is the microprogram residing in
control memory, but on the other hand, this technique is slower than Hardware
Control Unit in since the execution of a single instruction requires many fetches
from control store, however, this control unit is suitable for CISC design.

2. Hardwired Control Unit
In this case, the control signals are not stored anywhere in the control unit and
these signals are generated instantly at the time of instruction fetch, this method
depends mainly on hardware gates (oring, anding, not) to generate these control
signals (consecutive control words).

The advantage of hardwired control is that is very fast. The disadvantage is that
the instruction set and the control logic are directly tied together by special circuits
that are complex and difficult to design or modify. If someone designs a hardwired
computer and later decides to extend the instruction set, the physical components
in the computer must be changed. This is prohibitively expensive, because not

 25 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

only must new chips be fabricated but also the old ones must be located and
replaced, the following figures show the organization of this unit.

Basic Organization of H/W control unit

Basic Organization of H/W control unit with a separate decoder/encoder

A programmable logic array (PLA) is a kind of programmable logic device used to
implement combinational logic circuits. The PLA has a set of programmable AND
gate planes, which link to a set of programmable OR gate planes, which can then
be conditionally complemented to produce an output. The number of AND gates
in the programmable AND array are usually much less and the number of inputs of
each of the OR gates equal to the number of AND gates.

https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Electrical_network
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate

 26 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

PLA Schematic

3. Dynamic Microprogramming
A more advanced development known as dynamic microprogramming permits a
microprogram to be loaded initially from an auxiliary memory such as a magnetic
disk. Control units that use dynamic microprogramming employ a writable control
memory; this type of memory can be used for writing (to change the
microprogram) but is used mostly for reading.

Memory Cycle Time (MCT) (time memory : tm)
It is the time that is measured in nanoseconds, the time between one Ram access of
time when the next Random Access Memory RAM access starts.

In other words, it is the minimum time elapsed between two successive read/write
operations.

Memory access Time (MAT)
Access time is the amount of time it takes the processor to read data, instructions,
and information from memory. A computer’s access time directly affects how fast the
computer processes data. Accessing data in memory can be more than 200,000
times faster than accessing data on a hard disk because of the mechanical motion of
the hard disk.

In other word, it is the minimum time elapsed between the read/write signal and the
MFC signal.

 27 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Drawing of the Read and Write Timing Signals

Timing diagram for Mov R3, [R2] instruction (memory read operation)

Timing diagram for Mov [R2], R1 Instruction (memory write operation)

 28 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Hardware Control Unit- Signals Generating
Let us see how the encoder generated signal for single bus processor organization
shown in following figure, the encoder circuit implements the following logic
equation to generate Yin:

Generating of Yin control signal

Generating of Zout control signal

 29 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

How can be sketched?

Run Signal
This signal is depends mainly on the WMFC signal, in which if there is no wait on
memory, the run is 1 and the operation is normally going on, but, however, if there
is any wait on memory, run became 0 which cause the CPU clocks became
inactive for the entire time until the operation required form memory is completed.

WMFC=T2+T5.Add+…

Generating of the Run signal

 30 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

The problem of the previous figure is that the MFC signal is independent of the
CPU clocks and can arrive at any point during the CPU clock, the proper work is
to start the operation at the positive edge of the clock since each operation required
at least one clock to complete, if the operation started behind the positive edge
(clock starting point), the remaining time of the clock will not be enough for any
operation and error will happened.
To solve this problem, flip-flop is needed to store the MFC signal and trigger it
when new CPU clock is emitted.

Microprogram Total Time and Clocks
The miroprogram consumes some CPU time (clocks) depends on the length of that
microprogram and the action performed.

Consider the CPU clocks (tcpu)is 10 nsec, MAT=70 nsec. Find the total execution time
for code in page 19, draw the clocks.

Steps Time taken Wait time
1, 2 70 nsec 50 nsec

3 10 nsec 0 nsec
4, 5 70 nsec 50 nsec

6 10 nsec 0 nsec
7 10 nsec 0 nsec

total 170 nsec 100 nsec

Number of clocks = 170/10=17 clocks, 10 of them are wait.

Synchronizing of the MFC signal
with CPU clocks

 31 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

DRAM and SRAM
DRAM (Dynamic RAM) requires the data to be refreshed periodically in order to
retain the data.

SRAM (Static RAM) does not need to be refreshed as the transistors inside would
continue to hold the data as long as the power supply is not cut off.

A DRAM module only needs a transistor and a capacitor for every bit of data where
SRAM needs 6 transistors. Because the number of transistors in a memory module
determine its capacity, a DRAM module can have almost 6 times more capacity with
a similar transistor count to an SRAM module. This ultimately boils down to price,
which is what most buyers are really concerned with.

Some Differences

1. SRAM is static while DRAM is dynamic.
2. SRAM is faster compared to DRAM.
3. SRAM consumes less power than DRAM.
4. SRAM uses more transistors per bit of memory compared to DRAM.
5. SRAM is more expensive than DRAM.
6. Cheaper DRAM is used in main memory while SRAM is commonly used in cache
memory.

 32 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Cache Memory
A cache memory includes a small amount of fast memory (SRAM) and a large
amount of slow memory (DRAM) as shown below.

Cache Memory System

 33 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

While the miss rate is the opposite of the hit rate.

Program locality

The main principle of the cache memory is the prediction of the memory location for
the next access, which is called program locality. Program locality enables cache
controller to get block of memory instead of getting just single instruction.

This principal may not work properly when program executes jump and call
instructions.

 34 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

 35 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Mapping Function

Since the cache memory has limited size as compared to main memory, some kind of
mapping is required to decide which block of main memory can reside in which block
of cache memory, this called Cache Mapping Function.

The cache mapping function is responsible for all cache operations:
• Placement strategy: where to place an incoming block in the cache
• Replacement strategy: which block to replace upon a miss
• Read and write policy: how to handle reads and writes upon cache misses

Three different types of mapping functions:

• Associative Mapping Function
• Direct mapped Mapping Function
• Block-set associative Mapping Function

Cache Read and Write Policies

• Read and Write cache hit policies
• Write through—updates both cache and MM upon each write, pros: (Important in
multiprocessor systems), cons: (waste bus and memory bandwidth).

 • Write back—updates only cache. Updates MM only upon block removal.
Pros: (Reduces write traffic to memory), cons: (Takes longer to load new cache
lines), (required dirty bit).

 • “Dirty bit” is set upon first write to indicate block must be written back.

• Read and Write cache miss policies

 36 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

 • Read miss—bring block in from MM, Either forward desired word as it is brought
in, or, Wait until entire line is filled, then repeat the cache request.

 • Write miss
 • Write-allocate—bring block into cache, then update
 • Write–no-allocate—write word to MM without bringing block into cache.

1. Direct Mapping Function

Direct Mapping Function

 37 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Mapping process
– Use tag to see if a desired word is in cache
– It there is no match, the block containing the required word must first be read from
the memory
Advantage
– simplest replacement algorithm
Disadvantage
– not flexible
– there is contention problem even when cache is not full

 For example, block 0 and block 128 both take only block 0 of cache:
– 0 modulo 128 = 0
– 128 modulo 128 = 0
– If both blocks 0 and 128 of the main memory are used a lot, it will be very slow

2. Associative Mapping Function
In this technique, the main memory block can be placed into any cache block position,
as there is no fix position.
The memory address has only two fields, word and tag, this technique is also referred
to as fully associative.

Associative Mapping Function

 38 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

For example, 4095 blocks -> 4095 tag = 212 => 12 bit tag

Advantage
– Any empty block in cache can be used, flexible
Disadvantages
– Must check all tags to check for a hit, expensive

3. Set Associative Mapping Function

Two-way set associative cache

 39 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Comparison between different placements techniques

 40 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

 41 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

 42 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

 43 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Types of Cache Misses
• Three types

∗ Compulsory misses
- Due to first-time access to a block
- Also called cold-start misses or compulsory line (block) fills
- Can be avoided by prefetch more

∗ Capacity misses
- Induced due to cache capacity limitation
- Can be avoided by increasing cache size

∗ Conflict misses
- Due to conflicts caused by direct and set-associative mappings
- Can be completely eliminated by fully associative mapping
- Also called collision misses

Example:
Consider you have a cache memory of 4 blocks (lines) size, find the hit ratio for the
following reference pattern = { 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4}
For each of the following:
1- direct mapping
2- associative mapping
3- Set associative mapping, 2 blocks per set ?
Solution:

 44 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Another example solved in direct mapping function:ref {0,7,9,10,0,7,9,10,0,7,9,10}

 45 Advanced Architecture, Third Class, Computer Science Department, CSW, 2016-2017

Memory Interleaving

This is a design made to compensate for the relatively slow speed of dynamic
random-access memory (DRAM) or core memory, by spreading memory addresses
evenly across memory banks. That way, contiguous memory reads and writes are
using each memory bank in turn, resulting in higher memory throughputs due to
reduced waiting for memory banks to become ready for desired operations.

To speed up the memory operations (read and write), the main memory of 2n
=N words can be organized as a set of 2m=M independent memory modules (where
m<n each containing 2n-m words. If these M modules can work in parallel (or in a
pipeline fashion), then ideally an M fold speed improvement can be expected.

In low–order interleaving, consecutive addresses in the memory will be
found in different memory banks.

While in high-order interleaving, consecutive addresses in the main memory
will be found in the same memory bank.

High and low order interleaving

https://en.wikipedia.org/wiki/Speed
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Core_memory
https://en.wikipedia.org/wiki/Memory_bank

	Memory Cycle Time (MCT) (time memory : tm)
	Memory access Time (MAT)

